Wiwi's Blog


  • Home

  • About

  • Tags

  • Categories

  • Search

Factor Graph and the Junction Tree Algorithm

Posted on 2020-09-09 | In Uncertainty Modelling in AI
Words count in article: 240 | Reading time ≈ 1

Factor Graph

VS DGM & UGM

DGM and UGM: allow a global function of several variables to be expressed as a product of factors over subsets of those variables, designed for conditional independence or potentials.
Factor graphs: make this decomposition explicit by introducing additional nodes for the factors in addition to the nodes representing the variables, designed for more explicit details of the factorization.

Read more »

Convolution and Pooling

Posted on 2020-09-08 | In Neural Network and Deep Learning
Words count in article: 733 | Reading time ≈ 4

Convolution

Convolution is a linear transformation and the output is the feature of the input.

  • 1D: text processing
  • 2D: image processing
  • 3D: 3D data, CT, microscopy, etc

mD: m dimensions where the kernel is shifted

Read more »

Variable Elimination and Belief Propagation

Posted on 2020-09-02 | In Uncertainty Modelling in AI
Words count in article: 560 | Reading time ≈ 3

Variable Elimination Algorithm

General probabilistic problem: calculate $p(X_F|X_E)$ for arbitrary disjoint subsets $E$ and $F$: ( $X_F$ are query nodes, $X_E$ are evidence nodes)

$X_R$ are nodes that must be marginalized out of joint probability.

Joint probability table size of $n$ variabels that takes $k$ states:
a naive summation: $O(k^n)$.
a factored form: $O(k^r)$ where $r\ll n$

Read more »

Training Deep Networks

Posted on 2020-09-01 | In Neural Network and Deep Learning
Words count in article: 1k | Reading time ≈ 6
Stochastic Gradient DescentVarious GD’s problems and advantages Forward computer the average loss among: all training samples (GD) randomly pick a single training sample (SGD) randomly pick b training ...
Read more »

Markov Random Fields (Undirected Graphical Models)

Posted on 2020-08-26 | In Uncertainty Modelling in AI
Words count in article: 878 | Reading time ≈ 5

为什么需要无向图模型

使用无向图模型(UGM: Undirected Graphical Models) $\mathcal G(\mathcal V,\mathcal E)$来表示Markov Random Field(Markov network)。
$\mathcal V$ : 顶点集合,每个顶点与一个随机变量 $X_i$ 一一对应。
$\mathcal E$ : 无向边集合。
边没有方向性,这对于一些图像处理或空间分析问题更加自然。
For MRF, conditional independence is determined by simple graph separation, not the defination of “blocked”.

Read more »

From Shallow to Deep Neural Network

Posted on 2020-08-25 | In Neural Network and Deep Learning
Words count in article: 468 | Reading time ≈ 2

Multilayer Perceptron (MLP)

The Perception

input: $x_1,x_2…,x_N$
weight: $w_1,w_2,…,w_N$
output: $y={\mathcal g }(\boldsymbol{w^Tx})=\begin{cases} 1,\qquad if\quad\boldsymbol{w^Tx}>0 \\ 0,\qquad else\end{cases}$
Linear functions are limited: Linear models cannot fit in data from XOR function:

Read more »

Bayesian Networks (Directed Graphical Models)

Posted on 2020-08-19 | In Uncertainty Modelling in AI
Words count in article: 1.3k | Reading time ≈ 5

条件独立 conditional independence

完全独立不足以对现实的随机变量建模,而完全相关会导致计算量过大。
随机变量 $X_A$ 和 $X_C$ 关于 $X_B$ 条件独立:$p(x_A,x_C|x_B)=p(x_A|x_B) p(x_C|x_B)$
等价于:$p(x_A|x_B,x_C)=p(x_A|x_B) \qquad \forall X_B:x_B>0$
也可以写作:$X_A \perp X_C | X_B$

Read more »

Classification

Posted on 2020-08-18 | In Neural Network and Deep Learning
Words count in article: 1.2k | Reading time ≈ 5

Regression VS Classification

回归问题:定量(quantity)
分类问题:定性(label)
分类问题的标签一般由回归或者直接测量来得到。eg. 预测明天的天气,降水量超过一定阈值$C$为有雨,否则为不下雨。这里的降水量是个连续型随机变量,可以直接测量也可以通过回归来预测。

也可以将阈值$C$与待学习的参数$w$合并:

Read more »

Probability Reasoning

Posted on 2020-08-12 | In Uncertainty Modelling in AI
Words count in article: 1.9k | Reading time ≈ 8

概率空间 Probability Space

概率空间 $(\Omega,E,P)$包含了三个部分,用来描述概率现象。
样本空间(Outcome/Sample Space) $\Omega$
事件空间(Event Space) E
概率分布(Probability Distribution) $P:E\to R$

Read more »

Linear Regression

Posted on 2020-08-11 | In Neural Network and Deep Learning
Words count in article: 1.4k | Reading time ≈ 6

神经网络发展历程

神经网络主要依赖于特征转换(feature transformation),通过准备数据、提取特征来构造模型。

history

Read more »
Return1…4567Next Page

HUANG Liu

Love always wins.

65 posts
12 categories
22 tags
GitHub E-Mail
0%
© 2021 HUANG Liu | Site words total count: 74.9k
Powered by Hexo
|
Theme — NexT.Pisces v5.1.4