Linear Regression
Linear regression
Univariate: single feature $x\in R$
Multivariate: multiple features $\boldsymbol{x}\in R^m$
Linear Transformation: $\widetilde{y}=\boldsymbol{w^Tx}$
Loss: measures the difference between the prediction and the ground truth
Training: to optimize(i.e. minimize) the loss w.r.t parameters($\boldsymbol{w}$)