Motivation: How to get the unknown parameter $\theta$ of a DGM/UGM $p(x_1,x_2…,x_M|\theta)$ from fully observed data?
Given: a set of 𝑁 independent and identically distributed (i.i.d) complete observation of each random variable 𝑋:$x_{1,1}, … x_{1,N},…, x_{M,1},…x_{M,N}$.
DGM: MLE & MAP
Special Cases: Single Random Variable DGM
graph TD; parameters-->X theta-->X_observation_1; theta-->X_observation_2; theta-->...; theta-->X_observation_N;
theta is the parameter we want to learn from the N disconnected observations of variable.
Continuous: Univariate Normal Distribution
Fit an univariate normal distribution model to a set of scalar data $X:x_1,x_2,…,x_N$.
Goal is to find the parameter $theta = (\mu,\sigma^2)$
- Maximum Likelihood Estimation (MLE)
- Maximum a Posteriori (MAP)
Discrete: Univatiate Categorical Distribution
- Maximum Likelihood Estimation (MLE)
- Maximum a Posteriori (MAP)